Медицинские новости:

Будущее медицины: иммунотерапия победит инфекции, рак и аллергию

Администратор 18 Декабря в 3:44 1450 0
Будущее медицины: иммунотерапия победит инфекции, рак и аллергию
Иммунотерапия меняет правила игры в современной медицине.

Но война не окончена: рак, инфекционные и аутоиммунные заболевания продолжают убивать людей.

Может ли 2018 год стать переломным моментом?

Представьте мир будущего, где безболезненные вакцины будут защищать от любых инфекций – от герпеса до ВИЧ. Где иммунотерапия будет успешно бороться с раковыми клетками, останавливать аллергию и ревматоидный артрит, предотвращать отторжение донорских органов.

По мнению ученых, это станет реальностью благодаря новым биоматериалам.

«Секрет этого прыжка – в инновационных биоматериалах, которые способны изменить до неузнаваемости мир вакцин», - утверждает доктор Джонатан Бромберг (Jonathan Bromberg), профессор хирургии, микробиологии и иммунологии на кафедре медицины Университета Мэриленда в Колледж-Парке, США.

О перспективах «революции в иммунотерапии» профессор Бромберг и его коллега доктор Кристофер Джуэлл сообщают в последнем номере журнала Trends in Immunology. Давайте выясним, что ждет медицину в ближайшие годы.

Что такое биоматериалы?

Биоматериал – это любая разновидность материала, природного или синтетического, который может использоваться в медицине «для поддержки, модификации или замены поврежденных тканей и биологических функций». Такое определение биоматериалов дает Национальный институт биомедицинской визуализации и биотехнологии США.

Что это значит?

Биоматериалы встречаются повсюду. Их получают из стекла, керамики, пластика, металла или живых организмов (коллаген, желатин). В состав нередко добавляются живые клетки и их компоненты. Сегодня область применения биоматериалов необычайно широкая: искусственные суставы, коронарные стенты, контактные линзы, хирургические швы, растворимые покрытия, биологические сенсоры и многое другое.

В отличие от ортопедии, для иммунотерапии биоматериалы стали гораздо более поздним «открытием». В сфере разработки вакцин роль биоматериалов чрезвычайно важна, хотя и малозаметна: они работают на микроскопическом уровне. 

Основные области применения биоматериалов в иммунотерапии:

• конъюгированные с полимерами наночастицы для доставки в иммунные клетки
• стабильные или биодеградируемые каркасы для имплантации
• микроигольчатые устройства для введения вакцин

Биоматериалы контролируют высвобождение вакцин, защищают их от ферментативного разложения и экстремальных температур, позволяют манипулировать ответом иммунной системы на терапию.

По словам профессора Бромберга, их потенциал невозможно переоценить.

Биоматериалы помогут лечить смертельные инфекции

Когда мы думаем о вакцинах, первыми приходят на ум инфекционные заболевания.

Большинство современных вакцин содержат два элемента:

• часть инфекционного микроорганизма или один из их антигенов
• адъювант – вещество, которое активирует иммунный ответ

Сегодня наиболее распространенным адъювантом в вакцинах является алюминий. Следующим поколением адъювантов станут биоматериалы – они уже не просто «мальчики на побегушках», а сами способны индуцировать иммунный ответ. «Широкий ассортимент биоматериалов делает их особенно привлекательными: для тонкой настройки вакцины можно использовать частицы самой разной формы, размера, химической структуры. В ближайшие несколько лет мы научимся управлять иммунной системой в прямом смысле», - уверен доктор Кристофер Джуэлл.

Другая многообещающая стратегия, недавно внедренная в клиническую практику - это доставка компонентов вакцин с помощью микроигольчатых устройств, или микроигл. Эти устройства настолько маленькие и тонкие, что не вызывают боли и могут использоваться практически незаметно для пациента, в том числе в педиатрической практике.

Испытания показали: введение вакцин против гриппа с помощью микроигольчатых устройств дает результаты, сопоставимые с привычной вакцинацией.

Зачем шприцы, когда есть безболезненные растворимые микроиглы?

«Такие открытия могут трансформировать способ доставки вакцин, вылечить новые болезни и повысить доступность лекарственных препаратов для развивающихся стран мира. Неудивительно, что сегодня создатели вакцины против ВИЧ экспериментируют с микроиглами», - подытожил преимущества технологии Бромберг.

Иммунотерапия убивает рак

В терапии рака важно доставлять лекарство прямо в цель. Это легче сказать, чем сделать.

Как лекарственная молекула выбирает путь через многочисленные сосуды и ткани?

Как она находит клетки-мишени?

Биоматериалы помогут химиотерапии и иммунотерапии рака несколькими способами.

Их можно соединять с «сигналом самонаведения» - молекулой, которая специфична для раковой клетки. Биоматериал состыковывается с клеткой (как ключ с замком), и доставляет лекарственное вещество непосредственно в опухоль. Высокая избирательность – это возможность значительно снизить дозы и токсичность химиотерапии.

Биоматериалы могут усиливать способность организма бороться с раковыми клетками. Исследования показывают: если соединить некоторые полимеры с Т-лимфоцитами, распознающими рак, можно существенно усилить врожденный противоопухолевый ответ Т-клеток. Это мощное оружие против рака, потенциал которого не используется.

Микроиглы могут заставить собственную популяцию Т-клеток бороться с меланомой, самой опасной разновидностью рака кожи. Это уже реальность, зарождающаяся в стенах лабораторий.

«Мы видим кардинальное изменение парадигмы в иммунотерапии рака. Современные биоматериалы помогают нам контролировать обучение иммунной системы и противоопухолевый ответ», - говорят исследователи.

Аутоиммунные заболевания и аллергия под контролем

Вакцины против инфекционных заболеваний и рака вызывают воспалительный иммунный ответ.

Но при аутоиммунных процессах – рассеянный склероз, целиакия, отторжение трансплантата – требуется обратное.

Здесь биоматериалы могут быть применяться для подавления или перенаправления иммунного ответа.

В экспериментальных моделях рассеянного склероза биоматериалы использовались для доставки аутоантигенов – антигенов, которые не вызывают реакции в здоровом организме. В результате иммунный ответ на белки нервных клеток у больных животных постепенно снижался, а симптомы заболевания исчезали. 

Лечение аллергии иммунотерапией – известная практика, которая отлично зарекомендовала себя. Но сейчас иммунотерапия аллергических заболеваний требует частых инъекций (до трех раз в неделю на начальном этапе) и может занять несколько лет. Инкапсулируя активные вещества в биоматериалы, ученые создают новые формы иммунотерапевтических препаратов.

По словам Джуэлла, через несколько лет лечение аллергии будет сведено буквально к нескольким инъекциям.

Для профессора Бромберга перспектива предотвращения РТПХ – иммунного воспаления при пересадке органов и тканей – стоит на первом месте. Это осложнение встречается очень часто и угрожает жизни реципиентов. Иммунотерапевтические препараты и молекулы-носители с медленным высвобождением иммунодепрессантов – вот рецепт завтрашнего дня против отторжения трансплантата. Они показали многообещающие результаты в опытах на мышах.

«Несмотря на все достижения в разработке вакцин и новых биоматериалов, нам не хватает эффективных средств, чтобы бороться с раком, инфекциями и аутоиммунными заболеваниями. Впереди много работы», - подытожил профессор.
Похожие статьи
показать еще
  • Новые
  • Популярные