Направления разработки композитов

25 Апреля в 8:36 2165 0


Беглое рассмотрение изменений в композитах в течение последних двадцати лет указывает на два важных направления в их разработке, а именно:

 

• новые полимерные технологии;

• новые технологии в применении наполнителей.

 

Новые полимерные технологии

 

Способы полимеризации

 

Процесс, с помощью которого паста композита превращается в твердый материал, является процессом полимеризации мономерной матрицы полимера.

 

В ранних поколениях композитов этот процесс был обеспечен выпуском материала в виде двух паст, смешивание которых давало необходимые для полимеризации ингредиенты. В одной пасте должен был содержаться активатор, такой как третичный амин, а в другой — инициатор, обычно пероксид бензоила.

 

В начале 70-х годов появились композиты, активируемые ультрафиолетовым (УФ) светом. В этих материалах УФ свет использовался для создания свободных радикалов, необходимых для запуска процесса полимеризации. Энергии УФ света было достаточно для разрушения центральной связи метилового эфира бензоина и создания двух первичных радикалов. Таким образом, достаточно было иметь только одну пасту, которая не отверждается до тех пор, пока ее не подвергнут действию УФ света. Однако было выявлено несколько серьезных недостатков при использовании отверждаемых УФ светом систем. УФ свет мог вызывать ожоги мягких тканей и вреден для зрения. Поэтому нужна была защита, и требовалось осторожное обращение при работе с аппаратами для УФ отверждения. Источником УФ света является дорогая ртутная разрядная лампа, при ее старении выход световой энергии постепенно снижается, а глубина отверждения ограничена из-за высокой степени поглощения света при прохождении через композит.

 

Тем не менее, идея иметь лишь одну пасту, которая может отверждаться когда это необходимо, была хорошо воспринята стоматологами и открыла путь для внедрения композитов, активируемых видимым светом (ВСА), в которых источником свободных радикалов стал камфорохинон. Энергия возбуждения у него ниже, чем у метилового эфира бензоина, поэтому свет в голубой части спектра с длиной волны -460-480 нм оказался очень эффективен. Применение такого света для отверждения имеет преимущество в использовании более дешевого источника света с кварцевой галогеновой лампой, которая оказывает не такое вредное воздействие как УФ облучение. Видимый свет лучше проникает через композит, обеспечивая большую глубину отверждения. В аппаратах используют специальные фильтры для отсечения УФ и инфракрасного участков спектра света на выходе, что позволяет избежать ожога мягких тканей и избыточного подъема температуры на облучаемой поверхности.

 

Методы отверждения суммированы в Таблице 2.2.2.

stomatologicheskoe_materialovedenie_table_2.2.2.jpg


Безопасность 

 

Беспокойства по поводу недостаточной безопасности использования высокоинтенсивного ультрафиолетового света удалось избежать при внедрении новых ВСА систем. Использование термина «видимый свет» вселяет чувство безопасности, так как это тот самый свет, воздействию которого мы подвергаемся постоянно. Тем не менее, рекомендуется избегать прямого воздействия света от аппаратов светового отверждения, которые излучают видимый свет весьма высокой интенсивности, так как голубой участок его спектра может вызвать повреждение глаз. Высокоинтенсивный свет сам по себе может оказать вредное действие на сетчатую оболочку глаза, имеется также потенциальная опасность повредить сетчатку из-за «вредного воздействия синего света». Однако на сегодня еще мало известно об этом свете и о том, насколько серьезной эта проблема может стать в будущем. Самое лучшее — это защищать глаза, что позволяет легко устранить возможное вредное воздействие отверждающего света.

 

Цветовое восприятие

 

Существует еще одна трудность, о которой должны быть осведомлены врачи-стоматологи, это то, к чему может привести продолжительное воздействие высокоинтенсивного света. Экспозиция света может нарушить цветовое восприятие врача, а это означает, что выбор композита подходящего оттенка может стать настоящей проблемой, особенно, при постановке множественных пломб или изготовлении виниров прямым методом послойного нанесения композита.

 

Ингибирование отверждения кислородом

 

Полимер не отверждается при взаимодействии с воздухом, а его поверхность остается липкой. Это имеет свои преимущества при выполнении так называемой послойной техники нанесения, обеспечивающей хорошую связь слоев композита. Однако проблема остается после нанесения последнего слоя. Если можно применить полоскиматрицы, то этого обычно достаточно для исключения доступа кислорода, и полимер будет полностью отвержден во всем объеме, включая и поверхностный слой. Для большинства полимерных композиций этот ингибированный кислородом воздуха поверхностный слой очень тонок, его глубина составляет не более нескольких микрон. Его легко стереть ватным тампоном, например, так делают при нанесении фиссурного герметика. Но есть такие полимерные композиции, в которых ингибирование кислородом процесса отверждения проявляется в более значительной степени, в этом случае потребуется специальный гель для того, чтобы предотвратить контакт отверждаемой полимерной поверхности с кислородом воздуха.

 

Ограниченная глубина отверждения

 

Еще одна причина, по которой ВСА композиты вытеснили УФ системы, состоит в том, что достигаемая при облучении УФ светом глубина отверждения значительно меньше, чем это получается с видимым светом.

 

 При использовании УФ систем имеется опасность неполного отверждения пломбировочного материала в глубоких полостях, что является их серьезным недостатком особенно при пломбировании жевательных зубов. Для отверждаемых УФ светом композитов максимальная глубина отверждения немногим более 2,0 мм, в то время как для ВСА композитов возможна глубина отверждения до 3-4 мм с хорошим источником света и при соблюдения правил работы с материалом.

 

Тем не менее, глубина отверждения при использовании обеих систем ограничена, и поэтому всегда существует опасность, что более глубокие слои пломбы не будут полностью отверждены. Это особенно проблематично при пломбировании композитами проксимальных полостей жевательных зубов (Рис. 2.2.8). Клинически пломбы выглядят эстетично, однако основание композитной пломбы может отверждаться не полностью, особенно, при использовании металлической матрицы. Для достижения оптимальных механических свойств требуется высокая степень конверсии двойной связи С =С в полимерной матрице, а это связано как со временем отверждения, так и с мощностью источника света для активации процесса полимеризации. Любая степень незавершенности процесса отверждения явится причиной непрочного основания пломбы, и это может привести к отколам пломбы. Именно из-за недостаточной опоры в пришеечной области, вызываемой растворением неотвержденного материала, развивается вторичный кариес.

 stomatologicheskoe materialovedenie_2.2.8.jpg

Рис. 2.2.8. Недостаточная полимеризация светоотверждаемого композитного материала у основания проксимальной ящикообразной полости

 

Существует ряд позиций, на которые необходимо обратить особое внимание. Источник света, используемый для ВСА композитов, более точно определяется как источник голубого света, а не видимого света с исключительно высокой интенсивностью. Для качественного источника видимого света выходное излучение должно иметь соответствующий спектр , представленный на Рис. 2.2.9.

 stomatologicheskoe materialovedenie_2.2.9.jpg

Рис. 2.2.9. Спектр света, излучаемый аппаратом для отверждения видимым светом

 

Для всех композитов, отверждаемых светом, превращение пасты в твердый материал базируется на способности света проникать в толщу материала и инициировать отверждение во всем объеме пломбы. Степень, до которой свет может проникать в композит, ограничена, поэтому и глубина, на которую происходит отверждение материала, имеет свои пределы.

 

Целый ряд факторов влияет на глубину отверждения, а именно:

 

• Тип композита. Свет направлен и падает на композит — он отражается, рассеивается и поглощается (Рис. 2.2.10), и эти процессы ограничивают глубину проникновения света. Это очень важно для темных оттенков композита, поэтому особое внимание необходимо уделять глубине отверждения композита, используя методику внесения материала порциями и удлинения времени облучения светом.

• Качество источника света.

 stomatologicheskoe materialovedenie_2.2.10.jpg

Рис. 2.2.10. Отражение, рассеивание и поглощение света при облучении им композита

 

 

Отверждение полимера в ВСА композитах наиболее эффективно инициируется светом с длиной волны в диапазоне 450-500 нм. Источник света должен быть сконструирован так, чтобы на выходе излучать максимум световой мощности в диапазоне около 460-480 нм, т.е. там, где находится максимум поглощения камфарохинона (Рис. 2.2.9). Поэтому недостаточно иметь высокую мощность на выходе светового потока, он должен иметь эту мощность в нужном диапазоне длин волн. Может также происходить и ухудшение работы самого источника, поэтому важно, чтобы параметры выходящего света, характеризующие качество его работы, проверялись регулярно. Сейчас для этой цели предложен ряд недорогих измерителей светового потока.

 

• Используемый метод. Наконечник световода должен располагаться как можно ближе к поверхности пломбы, поскольку эффективность отверждения резко падает при отведении его от поверхности. На самом деле интенсивность света на единицу площади поверхности падает обратно пропорционально квадрату расстояния от источника света до этой поверхности, как это показано на Рис. 2.2.11. Нужно тщательно избегать загрязнения конца световода композитом, так как это снизит эффективность отверждения при последующем использовании аппарата. Следует также строго придерживаться инструкции производите ля по времени светового отверждения, ни в коем случае не сокращая его, так как при этом, материал может остаться недоотвержденным. Размер световода может оказаться недостаточных размеров для больших пломб, чтобы сразу охватить поверхность всей пломбы, и может появиться соблазн веерным способом обработать поверхность. Этого не следует делать, так как невозможно определить, как долго освещалась каждая конкретная зона поверхности. Если обработка веерным способом все же проведена, необходимо продолжить световое облучение пломбы, чтобы появилась уверенность, что световые пятна от аппарата для отверждения надежно перекрывают друг друга. 

 stomatologicheskoe materialovedenie_2.2.11.jpg

Рис. 2.2.11.

 

Ряд производителей рекомендует проводить световое отверждение за очень короткое время, например, в течение 20 с, так как в конечном итоге можно получить экономию времени для окончательного отверждения материала. Этого времени может быть достаточно там, где присутствует очень тонкий слой композита, но при пломбировании полостей больших размеров этого времени будет явно недостаточно.

 

Время облучения светом для полноценной полимеризации должно составлять, по крайней мере, 40-60 с.

 

В ситуациях, когда нет хорошего доступа, например, к дистальным поверхностям при МОД пломбах из композитов для жевательных зубов, необходимо применять вспомогательные приспособления для улучшения отверждения — такие как светопроводящие клинья и прозрачные матрицы. Слишком продолжительное время освещения не приводит, однако, к увеличению глубины отверждения. Толщина слоя отверждения для определенного вида композита в сочетании с конкретным источником света достигает своего макимума, который невозможно превысить (Рис. 2.2.12). Таким образом, увеличение времени экспозиции более 60 с не повышает эффективность отверждения.

 stomatologicheskoe materialovedenie_2.2.12.jpg

Интерпретация литературных данных о глубине отверждения, весьма затруднительна. Тем более, что еще не существует универсального метода определения глубины отверждения. В этой связи получаемые данные разными авторами зависят от методики ее определения и, следовательно, сравнение данных литературных источников практически невозможно. Общее правило, которого следует придерживаться заключается в том, что отверждаемый слой не должен превышать 2 мм толщины, время световой экспозиции должно быть не менее 40 с. Если полость, глубже 2 мм, рекомендуется послойное внесение в нее пломбировочного материала и, соответственно, техника отверждения должна быть послойной.

Основы стоматологического материаловедения
Ричард ван Нурт

Похожие статьи
показать еще
 
Стоматология и ЧЛХ