Значение и место культуры тканей в биотехнологии растений

27 Декабря в 21:28 4800 0


Биотехнология как наука базируется на использовании биологических процессов в технике и промышленном производстве.

В свете современных представлений биотехнология растений - это соединение методов культуры клеток и тканей растений с методами молекулярной биологии и техникой рекомбинантных ДНК. Созданная система -клетки и ткани высших растений, выращиваемые вне организма на искусственных питательных средах в строго контролируемых условиях - позволяет изучать рост, клеточную дифференцировку и развитие растительного организма, разрабатывать новые клеточные технологии для промышленности и сельского хозяйства.

Вся сфера научной деятельности по реорганизации геномов обычно называется биотехнологией, хотя этот термин включает в себя более широкий круг понятий, чем культура изолированных тканей, генная и хромосомная инженерия.

Роль биотехнологии и, в частности, культуры изолированных тканей, состоит в решении таких глобальных проблем, как обеспечение населения продовольствием, более эффективная медицина, оптимальная экология.

Несомненно, что в настоящее время наиболее перспективными обсуждаемыми и иногда осуждаемыми направлениями биотехнологии являются генная и хромосомная инженерии, но вытекали они из культивирования изолированных органов, тканей и клеток и немыслимы без него.

Тотипотентность растительной клетки

Методы культивирования изолированных фрагментов растений основаны на использовании важного свойства растительной клетки — тотипотентности.

Тотипотентность (лат. Totus - весь, potentia - сила) - это свойство клетки реализовать генетическую информацию, обеспечивающую ее дифференцировку и развитие до целого организма.

Тотипотентностью обладают оплодотворенные яйцеклетка растений и яйцо животных организмов. Что касается дифференцированных клеток, то у животных тотипотентность присуща только некоторым клеткам кишечнополостных. Так, соматические клетки гидры дают начало новому организму.

У высших животных с ранних этапов эмбриогенеза, с началом специализации клеток, тотипотентность не реализуется.

Однако клетки, изолированные из эмбрионов млекопитающих, в условиях культивирования могут сохранять плюрипотентность - способность дифференцироваться во все типы клеток как собственно зародыша, так и экстраэмбриональных тканей. Такие клетки получили название эмбриональных стволовых клеток.

У растений в природных условиях (in vivo) тотипотентность могут проявлять и специализированные клетки. Пример тому - вегетативное размножение, в том числе наблюдаемое в результате развития растений из клеток листьев бегонии, узумбарской фиалки или каланхое.

Тотипотентность у растений реализуется и при заживлении ран. В этом случае на раневой поверхности растений в результате неорганизованной пролиферации клеток происходит развитие каллуса (лат. callus - толстая кожа, мозоль).

Образование каллуса можно наблюдать при прививках в местах срастания привоя и подвоя. Каллус способствует заживлению ран и первоначально состоит из недифференцированных клеток, начало которым на раневой поверхности дают клетки тканей, способные к дедифференциации (камбий, флоэма, молодые клетки ксилемы). Впоследствии в каллусе может иметь место вторичная дифференциация с образованием специализированных тканей и органов.

Однако в природных условиях растения ряда систематических групп тотипотентность не проявляют. Ввиду высокой специализации клеток многие однодольные растения утратили способность к раневой реакции и вегетативному размножению.

Возможность реализации супрессированной in vivo и активной тотипотентности предоставляется в условиях in vitro при выращивании фрагментов тканей, органов или клеток на искусственных питательных средах. Этот переход специализированных клеток к эмбриональным синтезам, последующему делению с образованием недифференцированных клеток, а затем и к повторной дифференциации осуществляется под действием экзогенных фитогормонов.

Исторические этапы развития методов культивирования in vitro

Образование каллуса впервые описано французским энциклопедистом Дугамелем (1756), опубликовавшим результаты по изучению циркуляции клеточного сока и заживлению ран у растений, срастанию тканей при прививках.

Позже выполненный микроскопический анализ срезов каллуса, индуцированного на стеблях декоративных древесных растений, позволил Трекулу (1853) выявить, что образование каллуса может происходить от разных тканей (камбиальной, флоэмы и очень молодых частей ксилемы).

Тотипотентность теоретически постулирована клеточной теорией, сформулированной в независимых работах Шлейдена (1838), проведенных на растительных объектах, и Шванна (1839) - на растительных и животных объектах.

Классические эксперименты были выполнены немецкими ботаниками Фёхтингом (1878) и Рехингером (1893). Фехтинг выявил наличие полярности у изолированных (даже очень тонких) фрагментов стеблей, которые во влажных условиях формировали в апикальной части почки, а в базальной - каллус или корни. Рехингер определил, что даже минимальные размеры эксплантов способны продуцировать почки и регенерировать целые растения, однако этот размер ограничен.

При культивировании фрагментов из почек тополя и ясеня, из корней свеклы и турнепса на поверхности сырого песка он показал, что с уменьшением толщины экспланта до 1,5 мм (не более чем 21-клеточный слой) способность к регенерации перестает проявляться.

Термин «тотипотентность» как способность растительных клеток к регенерации был введен Гебелем (1902), подтвердившим своими экспериментами результаты Фёхтинга.

Описанные эксперименты относят к культивированию изолированных тканей. И первой поддерживающей основой твердой среды был песок, а в качестве питательного компонента использовали воду. Однако для успешного воспроизводства методов культивирования in vitro необходимо использование многокомпонентных искусственных питательных сред и соблюдение асептических условий.

Впервые такой подход был применен Габерландтом (1902). В качестве питательной среды им был взят раствор минеральных солей по Кнопу, используемый с 1865 г. для песчаных культур, с добавлением источника углеводов сахарозы.

Вместе с тем для своих экспериментов Габерландт в качестве эксплантов использовал только высокоспециализированные клетки (тычиночные волоски традесканции, железистые волоски медуницы и крапивы, клетки сердцевины черешков водного гиацинта, замыкающие клетки устьиц лилейных, палисадные клетки из листьев яснотки).

В условиях культивирования такие клетки оставались живыми в течение месяца, увеличивали размер, изменяли форму, накапливали крахмал, но их деления не происходило. Это было связано не только с высокой специализацией клеток, но и с отсутствием в питательной среде веществ, способных индуцировать клеточное деление. Габерландт писал, что у изолированных для культивирования тканей отсутствуют стимулы, исходящие от целого организма или его частей.

Следует отметить, что в начале века успехов добились зоологи, работавшие в области культивирования тканей животных. Благодаря работам Гаррисона (1907), Карреля (1911) и других исследователей была создана методика выращивания тканей животных на питательных средах природного происхождения (плазме крови, зародышевой жидкости).



Выполненные в те годы работы по культивированию изолированных тканей растений на экстрактах из растительных тканей не были продуктивными. Лишь значительно позже, в 40-50-е гг., при использовании жидкого эндосперма кокосового ореха - кокосового молока, было показано, что растительные экстракты могут оказывать стимулирующее действие на рост изолированных органов и тканей в условиях культивирования, но только при их добавлении к основному составу синтетических сред.

На фоне временных неудач по культивированию изолированных тканей и клеток растений с начала века получил развитие метод культуры изолированных зародышей, широко используемый в настоящее время для решения многих задач биологии и биотехнологии. В 1904 г. Ханниг провел успешную серию экспериментов по культивированию уже в асептических условиях практически зрелых изолированных зародышей крестоцветных на растворе минеральных солей и сахарозы. Однако зародыши, изолированные из незрелых семян, в этих условиях не дифференцировались.

Практическое применение культуры изолированных зародышей для преодоления несовместимости при отдаленной гибридизации было продемонстрировано работами Лайбаха (1925). Он вычленял зародыши из нежизнеспособных гибридных семян льна, завязавшихся в результате скрещивания двух видов Linum perenne x Linum austriacum, и культивировал их на фильтровальной бумаге или вате, смоченных раствором сахарозы. В результате были выращены гибридные растения.

В Германии Котти (1922) и в США Роббинс (1922) постулировали необходимость использования для культивирования меристематических клеток, изолированных из кончиков корней или почек, более сложных по составу культуральных сред с добавлением аминокислот и дрожжевого экстракта.

Эти подходы были удачно реализованы в 30-е гг. в работах американского исследователя Филиппа Уайта и французского исследователя Роже Готре, которых принято считать родоначальниками современных методов культивирования изолированных органов и тканей растений. Успех работ Уайта и Готре был определен оптимальным сочетанием объектов культивирования и состава питательных сред.

Серия работ Уайта (1934) была посвящена выращиванию изолированных корней томатов, которые при периодических пересадках (пассировании) отрезками кончиков корней на свежую среду могли расти неограниченно долго.
Другое направление работ Уайта связано с изучением опухолей растений, для чего был использован метод культивирования изолированных тканей.

Большое значение имеют работы Уайта (1939; 1941), посвященные разработке составов питательных сред. Среда Уайта, содержащая наряду со смесью минеральных солей и витамины, в настоящее время широко используется для выращивания тканей многих культур. При культивировании ткани табака на этой среде впервые удалось наблюдать спонтанное развитие зачатков стеблевых почек и формирование побегов.

Основные объекты культивирования в работах Готре - камбиальная ткань стебля древесных и травянистых растений, ткань корнеплодов и клубней. В основе минерального состава среды была использована питательная смесь Кнопа. Готре заменил жидкую среду на твердую - агаровую и ввел в состав культуральных сред фитогормон ауксин - индолилуксусную кислоту (ИУК). Наличие этих компонентов в среде способствует длительной пролиферации культивируемых каллусных тканей. В работах Готре каллусная ткань, индуцированная из камбия, могла продолжать развитие в течение 18 месяцев.

После появления работ Р. Готре и Ф. Уайта метод культуры изолированных тканей растений начал быстро развиваться во многих странах. Вводили в культуру все новые и новые виды растений.

Ауксины были открыты в 20-е гг. как факторы тропизмов растений. Природный ауксин в растениях представлен в основном в виде р-индолил-3-уксусной кислоты (гетероауксином) - ИУК. Этот фитогормон был открыт в 1926 г. Вентом. В начале 30-х гг. Ф. Кегль выделил его в чистом виде и установил химическое строение. В 60-е гг. был выделен второй представитель этого класса фитогормонов - фенилуксусная кислота (ФУК).

Другой класс фитогормонов - цитокинины - открыли в 1955 г. Скуг и Миллер, изучая рост каллуса сердцевинной паренхимы табака. Путем щелочного гидролиза ДНК животного происхождения они получили кинетин, который оказался способным вместе с ауксином стимулировать деление клеток кусочка ткани сердцевинной паренхимы и камбия табака. На среде с ИУК без кинетина клетки не делились. В дальнейшем различные концентрации и соотношения цитокининов и ауксинов стали использоваться для каллусогенеза и индукции морфогенеза в культуре изолированных тканей растений.

В 1957 г. впервые индуцирован морфогенез в культуре каллусной ткани моркови и получены растения-регенераты. Успех достигнут благодаря работам Бутенко и Стеварда. Огромная заслуга в развитии биотехнологических работ в нашей стране принадлежит Р.Г. Бутенко из Института физиологии растений РАН. Вместе со своими сотрудниками она создала мощную школу по культуральным работам у растений, что значительно расширило возможности по реконструкции, именно генома растений.

В 1959 г. Никел и Тулик создали метод выделения и выращивания больших масс клеточных суспензий, а вслед за этим Джонсон (1 960), Павловай и Бутенко (1969) разработали метод культивирования отдельной клетки с помощью ткани-няньки.

В 1959 г. французский ученый Ж. Морель предложил метод культивирования изолированных меристем, который он использовал для микроразмножения орхидей. Еще ранее этим же методом он получил безвирусные растения картофеля. В нашей стране работы по микроразмножению меристемным методом на гербере были выполнены в Институте физиологии АН СССР под руководством Р.Г. Бутенко (1960, 1964).

В 1960 г. английским профессором Коккингом были впервые получены с использованием ферментов изолированные протопласты и разработаны условия для их культивирования. Через 10 лет, в 1970 г., в той же лаборатории Пауэр с сотрудниками осуществили искусственное слияние протопластов и таким образом открыли путь к созданию соматических гибридов.

В 1964 г. индийские ученые Гуха и Магешвари индуцировали андрогенез в культуре пыльников и использовали этот метод для получения гаплоидных растений.

В 1971 г. Загорска и другими впервые получены, изучены и описаны сомаклональные варианты табака.
Таким образом, открытие самой возможности роста клеток вне организма и регенерации из них растений, а также веществ, стимулирующих этот процесс (фитогормонов), создало предпосылки для повышения эффективности растениеводства и селекции растений, а также новых возможностей использования растений (промышленное производство БАВ, съедобные вакцины и др.).

Наибольшее распространение в практике в настоящее время имеют результаты исследований по тканевой и клеточной биотехнологии. Клетки и ткани растений, выращиваемые на искусственных питательных средах в стерильных условиях (в стекле), называют культурой изолированных тканей.

Н.А. Воинов, Т.Г. Волова
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы