Основы молекулярной терапии. Лекарственные средства на основе олигонуклеотидов

27 Декабря в 21:11 2345 0


Помимо рассмотренных нами способов лечения генетических заболеваний с помощью введения в дефектную клетку терапевтических генов, активно разрабатываются лекарственные средства на основе нуклеиновых кислот: антисмысловые олигонуклеотиды, РНК-ферменты (рибозимы), олигонуклеотиды, корректирующие мутации in vivo. Эти средства направлены прежде всего на лечение заболеваний, связанных с гиперпродукцией белков (рак, воспаления, вирусные и паразитные инфекции). Уменьшить продукцию можно снижением уровня транскрипции или трансляции.

Этого можно достичь несколькими способами: гибридизацией соответствующего олигонуклеотида со специфическим геном или мРНК, блокированием фактора транскрипции белка, уменьшением количества мРНК в результате расщепления РНК-ферментами и т.п. Рассмотрим принципы некоторых из них.

Рибоолигонуклеотид, который связывается с определенной мРНК и тем самым ингибирует трансляцию кодируемого ею белка, называется «антисмысловой» мРНК. Этот механизм используют некоторые бактерии для регулирования генов (рис. 3.20). На практике применяют искусственно сконструированные гены, у которых ДНК-вставка находится в такой ориентации, чтобы их транскрипты были антисмысловыми по отношению к мРНК-мишени (рис. 3.21).

Регулирование гена бактериоферритина (bfr) с помощью антисмысловой РНК
Рис. 3.20. Регулирование гена бактериоферритина (bfr) с помощью антисмысловой РНК

Ингибирование трансляции мРНК синтетическим антисмысловым олигонуклеотидом
Рис. 3.21. Ингибирование трансляции мРНК синтетическим антисмысловым олигонуклеотидом

Было показано, что возможно использование синтетических антисмысловых олигонуклеотидов, однако их терапевтический эффект будет сильно зависеть от их устойчивости к действию клеточных нуклеаз, системы доставки и специфичности их гибридизации. Для определения наиболее эффективных сайтов-мишеней на специфической мРНК производят тестирование набора антисмысловых олигонуклеотидов длиной 15-20 оснований с культурой клеток, синтезирующих мРНК-мишень. Состав синтезированных белков определяют электрофорезом и устанавливают, введение какого олигонуклеотида приводит к снижению синтеза белка-мишени.

Для защиты от нуклеазного расщепления синтезируются модифицированные олигонуклеотиды, при этом не утратившие способность гибридизоваться. На рис. 3.22 приведены структуры модифицированных нуклеотидов, эффективность которых интенсивно изучается. Например, показано, что олигонуклеотиды с заменой свободного кислорода фосфодиэфирной связи на серу (структура б) эффективно гибридизуются с комплементарной РНК-мишенью и полученные РНК-ДНК дуплексы активируют внутриклеточную рибонуклеазу Н.

Этот эндогенный фермент, гидролизует РНК-последовательность в таких гибридах. С такими олигонуклеотидами уже проведены многообещающие клинические испытания, в которых мишенями являлись РНК цитомегаловируса, ВИЧ, некоторых РНК, ответственных за развитие рака.

Модификации олигонуклеотидов: а - нормальная фосфодиэфирная связь; б - тиофосфатная связь; в - фосфамидная связь; г - 2'-0-метилрибоза; д - С-5-пропинилцитозин
Рис. 3.22. Модификации олигонуклеотидов: а - нормальная фосфодиэфирная связь; б - тиофосфатная связь; в - фосфамидная связь; г - 2'-0-метилрибоза; д - С-5-пропинилцитозин


Для эффективной доставки антисмысловых олигонуклеотидов их часто пакуют в липосомы, в свою очередь модифицированные специфическими лигандами, обеспечивающими адресную доставку (такой прием мы уже встречали, когда рассматривали способы невирусной доставки терапевтических генов). К настоящему времени проведен ряд испытаний и показана высокая терапевтическая эффективность антисмысловых олигонуклеотидов для подавления нежелательной пролифирации гладкомышечных клеток (осложнения после ангинопластики, коронарного шунтирования, атеросклероз), для лечения вирусных инфекций и малярии.

Принцип действия и строение рибозимов - природных РНК, обладающих нуклеазной активностью, показан на рис. 3.23.
Обнаружено, что эти короткоцепочечные РНК способны эффективно подавлять экспрессию вирусных генов, онкогенов, факторов роста и других терапевтически важных генов, расщепляя их мРНК. Модифицируя субстрат-связывающую последовательность, можно получать рибозимы, специфичные к определенной мРНК. Рибозимы можно синтезировать непосредственно в клетке транскрипцией синтетического олигодезоксирибонуклеотида, кодирующего каталитический домен и фланкирующие его гибридизующиеся участки.

Расщепление мРНК под действием рибозимов. Стрелкой показан сайт расщепления


Рис. 3.23. Расщепление мРНК под действием рибозимов. Стрелкой показан сайт расщепления

Такой олигонуклеотид встраивают в эукариотический экспрессирующий вектор и помещают в клетку. Образующаяся РНК самопроизвольно приобретает активную конформацию, так называемую форму «головки молотка». Множество рибозимов различной структуры и активности синтезировано химически. Например, в лаборатории нуклеиновых кислот Института химической биологии и экспериментальной медицины СО РАН (Новосибирск) проводятся многолетние исследования по получению синтетических рибозимов, обладающих повышенной активностью и стабильностью.

Для повышения защиты от преждевременного расщепления внутриклеточными нуклеазами получают различные производные рибозимов - с метилированными 2'-гидроксильными (см. рис. 3.22, г) группами, бинарные конструкции и т.п. Строение молекулы рибозима существенным образом влияет на его эффективность. На рис. 3.24 показана кинетика расщепления мРНК гена множественной лекарственной устойчивости mdr1 с помощью синтезированных рибозимов разной структуры.

Расщепление 190-звенного 5'-концевого фрагмента MDR1 мРНК модифицированными бинарными (1,3) и полноразмерными (2,4) рибозимами
Рис. 3.24. Расщепление 190-звенного 5'-концевого фрагмента MDR1 мРНК модифицированными бинарными (1,3) и полноразмерными (2,4) рибозимами: а - структура РНК с выделенным специфическим сайтом; б - накопление продуктов расщепления (материалы предоставлены А.Г. Веньяминовой, ИБХиФМ, Новосибирск)

Особое место в молекулярной терапии занимают так называемые методы активирования пролекарств. Например, одним из способов генной терапии рака является уничтожение опухолевых клеток с помощью активированного производного ганцикловира (GCV, производное гуанозина), продукта гена тимидинкиназы, из уже упомянутого нами вируса простого герпеса HSVtk.

Опухолевые клетки трансфецируют in vivo геном HSVtk под активным промотором и через несколько дней вводят ганцикловир, который фосфорилируется вирусной тимидинкиназой до монофосфата, а затем киназами клетки-хозяина до трифосфата. Это производное ингибирует ДНК-полимеразу и останавливает синтез ДНК, что приводит к гибели пролифилирующих клеток. Через межклеточные контакты ганцикловиртрифосфат проникает в соседние немодифицированные клетки и таким образом уничтожается дополнительно до десятка опухолевых клеток.

Ген, приводящей к гибели собственной клетки, называется геном «самоубийства» (в нашем случае это ген тимидинкиназы), а термин «пролекарство» относится к неактивной форме лекарственного вещества (в данном случае это ганцикловир). Этот подход был использован и для создания других вариантов комбинации генактиватор-пролекарство, но эффективность системы GCV-HSVtk уже доказана рядом доклинических испытаний.

Генная терапия является новой лечебной дисциплиной, становление которой происходит на наших глазах. Несмотря на некоторые успехи и многообещающие перспективны, существует ряд проблем, которые еще предстоит преодолеть.

Часть проблем лежит далеко не в плоскости медицины и молекулярной биологии. Речь идет о проблемах этических и политических. Как вы уже заметили, мы рассматривали методы генетической терапии только соматических клеток. Это означает, что произведенные коррекции ограничиваются определенным органом или тканью, «исправленные» гены не будут передаваться следующему поколению. Изменения генотипа зародышевых клеток (сперматозоидов или яйцеклеток) или оплодотворенных клеток должны передаваться из поколения в поколение.

В настоящее время генная терапия соматических клеток отнесена к стандартным методам медицинского вмешательства. В противоположность этому генная терапия зародышевых клеток является технологически гораздо более сложной, проблематичной и непредсказуемой. Поэтому эксперименты в этой области во многих странах запрещены.

В конце 80-х гг. в США были установлены правила, регулирующие испытания в области генетической терапии соматических клеток. Они гарантируют беспристрастный и репрезентативный отбор больных и их информированность (насколько опасно лечение, какова вероятность его успеха и пр.), конфиденциальность сведений о больных и произведенных исследованиях, осуществление всех манипуляций должным образом без причинения вреда, как конкретным больным, так и человеческой популяции в целом.

Поскольку лечение соматических клеток приводит к улучшению состояния и значительному продлению жизни больных с генетическими заболеваниями, но «улучшенный» ген не передается по наследству, существует мнение, что это приведет к накапливанию генетических заболеваний в человеческой популяции. Однако, по данным популяционной генетики, для существенного повышения частоты вредного гена в результате эффективного лечения требуются тысячи лет.

Н.А. Воинов, Т.Г. Волова
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы