Области применения генной инженерии растений

26 Декабря в 13:25 2591 0


Метаболическая инженерия растений направлена на проведение трансгенной клеткой новых биохимических реакций путем введения чужеродных генов или модификацией генов клетки-хозяина. Растения представляют один из наиболее привлекательных объектов для метаболической инженерии. Имея одинаковые пути синтеза основных биологических соединений, растения отличаются поразительным разнообразием своих конечных продуктов: сахаров, ароматических соединений, жирных кислот, стероидных соединений и других биологически активных веществ. Растения дают человечеству десятки тысяч природных продуктов, многие из которых представляют большую ценность для фармакологии и промышленности.

Иногда такими продуцентами важных лекарственных веществ являются уникальные тропические и эндемические растения, недоступные для их агротехнического производства в умеренных климатических зонах большинства развитых стран мира. Выделение из таких растений генов, определяющих направленный синтез специфических органических соединений, и их перенос в подобранные соответствующие растения превращают их в новые продуценты важных биологически активных веществ.

Многие растения содержат предшественников биосинтеза ценных биологических соединений, однако они не имеют ферментов для их превращений в эти соединения. Часто для метаболической инженерии достаточно переноса в клетку только одного гена. Примером такого типа метаболической инженерии является получение новых растений-продуцентов резвератрола, ценного лекарственного препарата широкого спектра действия, замедляющего старение. Резвератрол был обнаружен в винограде, где фермент стилбенсинтаза катализирует реакцию синтеза резвератрола из трех молекул малонил-СоА и одной молекулы 4-кумарил-СоА (рис. 2.15). Переносом гена стилбенсинтазы были получены другие растения, синтезирующие резвератрол.

Схема синтез резвератрола, найденного в винограде ценного препарата антиоксидантного типа с широким спектром действия. Исходные соединения присутствуют в клетках любых растений
Рис. 2.15. Схема синтез резвератрола, найденного в винограде ценного препарата антиоксидантного типа с широким спектром действия. Исходные соединения присутствуют в клетках любых растений

Создание растений с улучшенными лечебно-диетическими свойствами поможет улучшить пищевую ценность растений. Ранее было практически невозможно с помощью селекции вывести растения с повышенным содержанием витаминов. Однако с развитием биохимии растений стало более ясным, какие метаболические пути являются критическими для биосинтеза витаминов. Например, для синтезав -каротина (провитамина А) в растениях необходима фитоен-синтетаза.

Этот фермент участвует в конденсации двух молекул геранил-геранил дифосфата. Ген фитоен-синтетазы из нарцисса был введен в рис и экспрессирован в эндосперме риса. Таким образом, получен «золотой рис», который может помочь 2 млрд чел., страдающих от дефицита витамина А, для них рис - основная пища. Получены трансгенные растения рапса, экспрессирующие ген фитоен-синтетазы, в семенах которых значительно повысилось содержание каротиноидов. Показана экспрессия этого же фермента в клубнях картофеля, что приводило к повышенному синтезу каротиноидов и лютеина.

Недавно получены трансгенные растения земляники с повышенным синтезом L-аскорбиновой кислоты. Эти растения отличались суперэкспрессией гена НАДФ-зависимой Д-галактуронат-редуктазы (GalUR). Созданы растения сои с повышенным в пять раз содержанием витамина Е в семенах. Получены растения арабидопсиса с повышенным содержанием фолатов за счет экспрессии в них бактериального гена ГТФ-циклогидролазы-1 (EcGCH).

Уже существует салат с увеличенным содержанием железа, обогащенная лизином кукуруза. Ждет своего запуска в практику сорт сои с повышенным содержанием ненасыщенных жирных кислот (омега-3, омега-6 НЖК и др.), которые не синтезируются в организме человека, а попадают по пищевым цепям в основном через морепродукты из водорослей. Гены, встраиваемые в геном соевых бобов, были выделены из клеток водорослей (разработчик -компания Monsanto).

Разработаны в лабораториях и другие разнообразные трансгенные формы растений с улучшенными лечебно-диетическими свойствами.

Самый первый коммерческий успех получили растения, устойчивые к гербицидам, поскольку позволили очень успешно бороться с сорняками. Самыми распространенными являются трансгенные растения, устойчивые к глифосату (Раундап) - самому популярному гербициду, разлагающемуся в почве на нетоксичные составляющие и потому безопасному для окружающей среды. Ген был выделен из глифосат-устойчивого штамма E. coli.

Выведение растений, устойчивых к вредителям и болезням, поможет резко сократить применение химических средств защиты растений и уменьшить стоимость культивирования. Одними из первых в широкую практику вошли инсектицидные хлопок и кукуруза - так называемые Bt-сорта, которые были получены введением в них гена дельта-эндотоксина из Bacillus. thuringiensis (Bt или Cry-белок).



Bt-белок высокотоксичен для насекомых, но безопасен для других видов животных и человека. Он является протоксином, который расщепляется в кишечнике личинок насекомых, образуя активированный токсин.

Активированный токсин, в свою очередь, специфично связывается с рецепторами в средней кишке насекомых, что приводит к лизису клеток кишечного эпителия. Данный энтомотоксин - смертельный яд для ряда насекомых (в том числе и колорадского жука), но в то же время вполне безопасен для человека и животных, поскольку в организме млекопитающих нет ферментов для его расщепления и усвоения. Взаимодействие Bt-токсина с рецепторами насекомых строго специфично. В природе найдено большое количество штаммов B. thuringiensis, чьи токсины действуют на строго определенные виды насекомых.

Ранее препараты бактерий B. thuringiensis, содержащие Bt-белок, с успехом применяли для борьбы с насекомыми-вредителями, хотя использование таких препаратов достаточно дорого и не всегда эффективно. Введение гена протоксина в растения привело к тому, что Bt-растения перестали поедаться насекомыми. Этим путем был получен трансгенный картофель, устойчивый к колорадскому жуку.

Устойчивость к вирусам может обладать исключительной важностью для повышения сельскохозяйственной продуктивности. В настоящее время в различных странах мира проводят полевые испытания устойчивых к вирусам сортов батата (вирус SPFMV, sweet potato feathery mottle virus), кукурузы (MSV, maize streak virus) и африканской маниоки (мозаичный вирус). Возможно, эти культуры будут коммерциализованы в течение ближайших 3-5 лет.

Из-за сложности генома пшеницы, работа над созданием сортов, устойчивых к вирусу желтой карликовости ячменя (barley yellow-dwarf virus), продвигается очень медленно и до сих пор находится на стадии лабораторных экспериментов. Разработан также устойчивый к нематодам (корневым червям) ГМ-картофель.

Генно-инженерная биотехнология растений для фармакологии делает свои первые успешные практические шаги.

Растения являются удобной, безопасной и экономически выгодной альтернативой для получения различных белков, вакцин и антител по сравнению с системами экспрессии на основе микроорганизмов, культур животных клеток или трансгенных животных. За последние 20 лет множество ценных белков эффективно экпрессировано в растениях. Это белки человеческой сыворотки, регуляторы роста, антитела, вакцины, промышленные ферменты, биополимеры и реагенты для молекулярной биологии. Следует отметить перспективность получения ГМ-растений, синтезирующих новые формы антимикробных пептидов.

Растительные системы имеют все перспективы успешного использования для производства рекомбинантных белков в промышленном масштабе. Некоторые белки, синтезируемые трансгенными растениями, уже производятся западными компаниями или будут выпущены на рынок в ближайшие годы. Например, авидин, трипсин ив -глюкуронидаза, выделяемые из трансгенной кукурузы, производятся фирмой Sigma-Aldrich (США). В скором времени должны быть подготовлены к промышленному производству коллаген, липаза, лактоферрин, лизоцим, синтезируемые трансгенными растениями.

Синтез субъединичных вакцин в трансгенных растениях. Выявленно, что при экспрессии различных антигенов в растениях сохраняется их структурная идентичность и иммуногенность. Антигены, синтезируемые растениями, вызывали иммунный ответ при введении, например, HBs-антиген, синтезируемый растениями картофеля, вызывал у мышей более сильный иммунный ответ, чем дрожжевой. В настоящее время более пятидесяти различных антигенов были экспрессированы в ГМ-растениях, для некоторых из них показана иммуногенность при оральном введении.

Интенсивно разрабатывается концепция «съедобных вакцин» на основе трансгенных растений, чьи плоды, листья и семена годятся в пищу. В случае успеха исчезнет потребность в дорогостоящей очистке антигенов, которая необходима при создании вакцин для парентерального введения. Антигены, экспрессируемые в растениях, защищены растительными клеточными стенками от протеолиза при прохождении пищеварительного тракта и могут быть легко доставлены к клеткам слизистой оболочки кишечника, ответственным за мукозную систему иммунитета.

Таким образом, непрерывно разрабатываются все новые виды пищевых и технических растений с измененными свойствами - с улучшенным составом жиров, повышенным содержанием белков и витаминов, сладкие без сахара и накапливающие меньше вредных для здоровья нитратов, с повышенными декоративными свойствами. Опытные испытания проходят сотни пород деревьев, у которых часть ненужного человеку лигнина заменена полезной целлюлозой. При этом растут ГМ-деревья вдвое быстрее обычных. Трансгенные растения вырабатывают вакцины и лекарства, очищают почву от химического и радиоактивного загрязнения, синтезируют биодеградируемые полимеры для производства упаковки и белок паутины, из которого можно делать колготки и бронежилеты повышенной прочности.

Н.А. Воинов, Т.Г. Волова
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы