Новейшие достижения в области биотехнологии

26 Декабря в 9:46 8455 0


Несмотря на то что в настоящее время препараты и продукты, получаемые в процессах промышленной («белой») биотехнологии, главенствуют на рынке биотехнологических продуктов, наиболее впечатляющие успехи и прорывы в этой области связаны с использованием достижений клеточной и генетической инженерии.

Геномика - это направление биотехнологии, занимающееся изучением геномов и ролей, которые играют различные гены, индивидуально и в комплексе, в определении структуры, направлении роста и развития и регуляции биологических функций. Различают структурную и функциональную геномику.

Предмет структурной геномики - создание и сравнение различных типов геномных карт и крупномасштабное секвенирование ДНК. Проект по изучению человеческого генома (Human Genome Project) и менее известная Программа по изучению растительных геномов (Plant Genome Research Program) являются самыми масштабными исследованиями структурной геномики. В задачи структурной геномики входят также идентификация, локализация и составление характеристик генов.

В результате осуществления частных и государственных проектов по структурной геномике созданы карты геномов и расшифрованы последовательности ДНК большого количества организмов, в том числе сельскохозяйственных растений, болезнетворных бактерий и вирусов, дрожжей, необходимых для приготовления некоторых продуктов питания и производства пива, азотфиксирующих бактерий, малярийного плазмодия и переносящих его комаров, а также микроорганизмов, используемых человеком в самых разнообразных промышленных процессах. В 2003 г. завершен Проект по изучению генома человека.

Предмет и область функциональной геномики - секвенирование геномов, идентификация и картирование генов, выявление функций генов и механизмов регуляции. Для понимания различий между видами основную роль играет не знание количества генов, а понимание того, как они различаются по составу и функциям, знание химических и структурных различий в генах, которые и лежат в основе различий организмов. Эволюционный анализ постепенно становится главным приемом выяснения функций и взаимодействий генов в пределах генома.

Благодаря тому, что генетический код универсален и все живые организмы способны расшифровывать генетическую информацию других организмов и осуществлять заложенные в ней биологические функции, любой ген, идентифицированный в ходе того или иного геномного проекта, может быть использован в широком спектре практических приложений:
- для целенаправленного изменения свойств растений и придания им желаемых признаков;
- выделения специфических рекомбинантных молекул или микроорганизмов;
- идентификации генов, участвующих в осуществлении сложных процессов, контролируемых множеством генов, а также зависящих от влияния окружающей среды;
- обнаружения микробных заражений клеточных культур и др.

Протеомика - это наука, занимающаяся изучением структуры, функций, локализации и взаимодействия белков внутри клетки и между клетками. Набор белков клетки называется ее протеомом. По сравнению с геномикой, протеомика ставит перед исследователями гораздо более многочисленные и трудные задачи. Структура белковых молекул гораздо сложнее, чем структура молекул ДНК, которые представляют собой линейные молекулы, состоящие из четырех нерегулярно повторяющихся элементов (нуклеотидов).

Форма, которую принимает белковая молекула, зависит от последовательности аминокислот, однако все механизмы скручивания и складывания аминокислотной цепочки до конца не изучены. Задачей исследователей, работавших над программой Human Genome Project, была разработка методов, которые позволили бы добиться поставленных целей.

Ученые, занимающиеся протеомикой, и сейчас находятся в подобном положении: им необходимо разработать достаточное количество методов и приемов, которые могли бы обеспечить эффективную работу над огромным количеством вопросов:
- каталогизацию всех белков, синтезируемых различными типами клеток;
- выяснение характера влияния возраста, условий окружающей среды и заболеваний на синтезируемые клеткой протеины;
- выяснение функций идентифицированных белков;
- изучение взаимодействий различных белков с другими белками внутри клетки и во внеклеточном пространстве.

Потенциал белковой инженерии позволяет улучшать свойства используемых в биотехнологии белков (ферментов, антител, клеточных рецепторов) и создавать принципиально новые протеины, пригодные в качестве лекарственных препаратов, для обработки и улучшения питательных и вкусовых качеств пищевых продуктов. Наиболее значительны успехи белковой инженерии в биокатализе. Разработаны новые типы катализаторов, в том числе с применением техники иммобилизации ферментов, способные функционировать в неводной среде, при значительных сдвигах рН и температуры среды, а также растворимые в воде и катализирующие биологические реакции при нейтральном рН и при сравнительно низких температурах.

Технологии белковой инженерии позволяют получать новые типы белков биомедицинского назначения, например способных связываться с вирусами и мутантными онкогенами и обезвреживать их; создавать высокоэффективные вакцины и белки-рецепторы клеточной поверхности, выполняющие функцию мишени для фармацевтических препаратов, а также связывания вещества, и биологические агенты, которые могут быть использованы для химических и биологических атак. Так, ферменты гидролазы способны обезвреживать как нервно-паралитические газы, так и используемые в сельском хозяйстве пестициды, а их производство, хранение и применение не опасно для окружающей среды и здоровья людей.



Новейшие биотехнологические методы позволяют диагностировать многие заболевания и патологические состояния экспрессно и с высокой точностью. Так, для постановки стандартного теста определения присутствия в крови липопротеидов низкой плотности («плохого» холестерина) требуется провести три отдельных дорогостоящих анализа: выявление содержания общего холестерина, триглицеридов и липопротеидов высокой плотности. Кроме этого, в течение 12 ч до проведения теста пациенту рекомендуется воздержаться от приема пищи.

Новый биотехнологический тест состоит из одного этапа и не требует предварительного голодания. Эти тесты, помимо быстродействия, существенно снижают стоимость диагностики. К настоящему моменту разработаны и применяются биотехнологические тесты для диагностики некоторых видов опухолевых процессов, требующих для реализации небольшое количество крови, что исключает тотальную биопсию на начальных стадиях диагностики.

Кроме снижения стоимости, повышения точности и скорости диагностики, биотехнология позволяет диагностировать заболевания на гораздо более ранних этапах, чем это было возможно ранее. Это, в свою очередь, обеспечивает гораздо более высокие шансы пациентов на излечение. Новейшие биотехнологические методы протеомики дают возможность идентифицировать молекулярные маркеры, сигнализирующие о приближающейся болезни, еще до появления регистрируемых клеточных изменений и симптомов заболевания.

Огромное количество информации, ставшее доступным в результате успешного завершения проекта «Геном человека», должно сыграть особую роль в разработке методов диагностики наследственных заболеваний, таких как диабет I типа, муковисцидоз, болезни Альцгеймера и Паркинсона. Ранее заболевания этого класса диагностировали только после появления клинических симптомов; новейшие методы позволяют до появления клинических признаков определить группы риска, предрасположенные к заболеваниям такого рода.

Разработанные с помощью биотехнологии диагностические тесты не только повышают уровень диагностики заболеваний, но и улучшают качество медицинского обслуживания. Большинство из биотехнологических тестов портативны, что позволяет врачам проводить тестирование, интерпретировать результаты и назначать соответствующее лечение буквально у постели больного. Биотехнологические методы выявления патогенов важны не только для диагностики заболеваний.

Один из самых наглядных примеров их использования - скрининг донорской крови на наличие ВИЧ-инфекции и вирусов гепатита В и С. Возможно, со временем биотехнологические подходы дадут возможность врачам определять характер инфекционного агента и в каждом конкретном случае подбирать наиболее эффективные антибактериальные препараты не за неделю, как это делается современными методами, а за считанные часы.

Внедрение биотехнологических подходов со временем позволит врачам не только улучшить существующие методы терапии, но и разработать принципиально новые, полностью основанные на новых технологиях. На настоящий момент целый ряд биотехнологических методов лечения одобрен Управлением США по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA). В список заболеваний, подлежащих таким методам терапии, входят: анемия, муковисцидоз, задержка роста, ревматоидный артрит, гемофилия, гепатит, остроконечные кондиломы, отторжение трансплантата, а также лейкемия и ряд других злокачественных заболеваний.

Использование биотехнологических методов позволяет создавать так называемые «съедобные вакцины», синтезируемые генетически модифицированными растениями и животными. Так, созданы генетически модифицированные козы, молоко которых содержит вакцину от малярии. Получены обнадеживающие результаты в клинических испытаниях бананов, содержащих вакцину от гепатита, и картофеля, содержащего вакцины против холеры и патогенных штаммов кишечной палочки. Такие вакцины (например, в виде сублимированного порошка для изготовления напитков), не требующие замораживания, стерилизации оборудования или закупки одноразовых шприцов, особенно перспективны для применения в развивающихся странах.

В процессе разработки также находятся вакцины-пластыри против столбняка, сибирской язвы, гриппа и кишечной палочки. Уже получены трансгенные растения, синтезирующие терапевтические белки (антитела, антигены, факторы роста, гормоны, ферменты, белки крови и коллаген). Эти белки, производимые с помощью различных сортов растений, в том числе люцерны, кукурузы, ряски, картофеля, риса, подсолнечника, сои и табака, являются основными компонентами инновационных методов терапии ряда онкологических заболеваний, СПИДа, болезней сердца и почек, диабета, болезни Альцгеймера, болезни Крона, муковисцидоза, рассеянного склероз, повреждения спинного мозга, гепатита С, хронических обструктивных заболеваний легких, ожирения, онкологических заболеваний и др.

Клеточные технологии находят все более широкое применение для селекции, размножения и повышения продуктивности полезных растений, а также получения биологически активных веществ и лекарственных препаратов.

Н.А. Воинов, Т.Г. Волова
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы