Методы тонкой очистки и разделения препаратов. Колоночная хроматография

04 Января в 8:23 2516 0


В этом случае смесь молекул в растворе пропускают через колонку, содержащую твердый пористый матрикс. В результате взаимодействия с матриксом различные молекулы проходят через колонку с различной скоростью. После того как они достигнут в определенной последовательности дна колонки, их собирают отдельными фракциями.

В настоящее время разработано и применяется множество матриксов различных типов, используя которые, можно делить продукты согласно их заряду (ионообменная хроматография), гидрофобности (гидрофобная хроматография), размеру (хроматография гель-фильтрацией) или способности связываться различными химическими группами (аффинная хроматография).

Ионообменная хроматография. Ионообменная хроматография (ИХ) является разновидностью жидкостной хроматографии и в аппаратурном оформлении ничем не отличается от других видов жидкостной колоночной хроматографии.

В основе ионообменной хроматографии лежит процесс обмена между ионами анализируемого раствора (ПФ) и подвижными ионами того же знака ионообменника (НФ) (рис. 6.2).

 Катионообменная хроматография (схематизировано: изображено поверхностное электростатическое взаимодействие с частицами): а, б - две стадии процесса
Рис. 6.2. Катионообменная хроматография (схематизировано: изображено поверхностное электростатическое взаимодействие с частицами): а, б - две стадии процесса

В качестве ионообменников или ионитов обычно используют синтетические полимерные вещества, называемые ионообменными смолами. Они состоят из матрицы и активных групп, содержащих подвижные ионы. В зависимости от знака обмениваемых ионов различают катиониты и аниониты. Катиониты содержат кислотные группы различной силы, такие как сульфо-группы, карбоксильные, оксифенильные. Аниониты имеют в своем составе основные группы, например алифатические или ароматические аминогруппы различной степени замещенности (вплоть до четвертичных). Иониты могут находиться в Н-форме и ОН-форме, а также в солевой форме.

В Н-форме катиониты и ОН-форме аниониты содержат способные к обмену ионы водорода и гидроксила соответственно, в солевых формах ионы водорода заменены катионами металла, анионы гидроксила - анионами кислот. В зависимости от силы кислотных и основных групп в ионитах различают сильнокислотные (R-SО3Н) и слабокислотные (R-СООН) катиониты; сильноосновные (R-N(СН3)3ОН) и слабоосновные (R-NН3ОН). Сильнокислотные и сильноосновные иониты способны к ионному обмену в широком диапазоне рН.

Процесс ионного обмена протекает стехиометрично. Например:
R-S03H + Na+ = R-S03Na + H+
R(NH3)3OH + Cl- = R(NH3)3Cl + ОН-
Это ионообменное равновесие характеризуется константой ионного обмена:
Это ионообменное равновесие характеризуется константой ионного обмена
На основании констант ионного обмена построены ряды сродства ионов к данному иониту, позволяющие предвидеть возможности ионообменных разделений. В зависимости от сродства к фиксированным ионам неподвижной фазы разделяемые ионы перемещаются вдоль хроматографической колонки с различными скоростями; чем выше сродство, тем больше объем удерживания компонента. При разделении органических кислот и оснований важную роль играет степень их диссоциации.

Для двух веществ, имеющих разные константы обмена, рассчитывают фактор разделения или коэффициент распределения, который характеризует селективность ионита:
fa/ b= Ka/Kb, (6.3)
где fa/b - фактор разделения; KA, KB - константы ионного обмена веществ А и В. Чем больше фактор разделения, тем сильнее ионит удерживает вещество А. Например, константы ионного обмена солей железа (III) и кобальта (II) на сильнокислотном катионите марки КУ-2 составляют 3726 и 286 соответственно, тогда fFe3 /Co 2+ = 13. Таким образом, можно сделать вывод о том, что катионит КУ-2 более селективен к ионам железа (III).

Важной количественной характеристикой ионитов является их обменная емкость. Полная обменная емкость определяется количеством эквивалентов ионов, обмениваемых одним граммом сухого ионита. Чем больше обменная емкость, тем большую пробу можно ввести в колонку с ионитом. При подготовке ионитов к работе их переводят в соответствующую форму. Так, для перевода катионита в Н-форму через колонку с набухшим ионитом пропускают раствор сильной кислоты, избыток которой отмывают водой.

Затем медленно пропускают раствор смеси ионов. Каждый катион задерживается на ионите согласно своей сорбируемости. Далее пропускают подходящий элюент. Например, катионы щелочных металлов легко элюируются 0,1 М HCl. При этом ионы водорода обмениваются на сорбированные катионы, которые вместе с раствором выходят из колонки в соответствии с константами ионного обмена. На выходе из колонки фракции собирают в отдельные сосуды и определяют содержание любым подходящим методом.

Иониты применяются для деионизации (обессоливания) воды, очистки сахарных сиропов от минеральных солей; в препаративной химии - для концентрирования растворов; для определения ионов железа (III), меди и свинца в вине; кальция и магния в молоке; различных металлов в биологических жидкостях. Кроме того, ионный обмен используют для перевода ионов в форму, удобную для количественного определения. Ионообменную хроматографию применяют для разделения фенолов, карбоновых кислот, аминокислот, аминосахаров, пуриновых, пиримидиновых и других оснований.

Часто иониты используют для предварительного разделения сложных смесей на менее сложные. На ионном обмене основано получение ионнитного молока для детского питания. Ионный обмен используют для очистки натуральных соков от ионов тяжелых металлов. Ионообменные смолы применяют для получения ионообменных мембран.

Гель-фильтрация обычно используется и для разделения молекул, и для определения их размеров. Колонки, предназначенные для гель-фильтрации, заполнены крошечными пористыми инертными шариками; при использовании таких колонок происходит разделение белков или других соединений по размерам. Молекулы небольшого размера по мере прохождения через колонку проникают внутрь шариков, а более крупные молекулы остаются в промежутках между шариками. В результате они быстрее проходят через колонку и выходят из нее первыми (рис. 6.3).



В качестве матрикса можно использовать зерна поперечно-сшитого полисахарида (декстран или агароза). Таким образом, при помощи гель-фильтрации можно разделить смеси веществ в зависимости от размеров их молекул. Выход веществ из колонки происходит в порядке уменьшения их молекулярной массы. Гельпроникающая хроматография на колонке используется для очистки пестицидов, а также жирорастворимых витаминов перед их определением методом ВЖХ.

Хроматография на основе «молекулярных сит» (компоненты, размеры которых соответствуют размерам пор или входов в поры адсорбента, задерживаются на колонке): а, б - две стадии процесса
Рис. 6.3. Хроматография на основе «молекулярных сит» (компоненты, размеры которых соответствуют размерам пор или входов в поры адсорбента, задерживаются на колонке): а, б - две стадии процесса

Гораздо более эффективен метод аффинной хроматографии (хроматография по сродству). В основе этого метода лежат биологически важные взаимодействия, происходящие на поверхности белковых молекул. При аффинной хроматографии используется нерастворимый матрикс, ковалентно связанный со специфичными лигандами (антителами или субстратом ферментов), которые присоединяют определенный белок. Связываемые иммобилизованным субстратом молекулы фермента можно элюировать концентрированными растворами субстрата в свободной форме, а молекулы, связанные с иммобилизованными антителами, можно элюировать за счет диссоциации комплекса антитело-антиген концентрированными растворами соли или растворами низкого или высокого рН. Однократная хроматография на такой колонке позволяет зачастую достигнуть очень высокой степени очистки препарата.

Аффинная хроматография может обеспечить полную очистку продукта из сложной многокомпонентной смеси - культуральной жидкости, экстракта клеток - в одну стадию, в то время как более традиционные методы осаждения и ионообменной хроматографии требуют многоэтапной очистки, сопряженной с большими затратами труда и времени. Определенные неудобства вызывает относительная дороговизна материалов для аффинной хроматографии, в частности, веществ, используемых в качестве лигандов. Проблемой является также быстрый выход колонки из строя при пропускании через нее смесей, компоненты которых забивают промежутки между гелевыми частицами. Поэтому в производственных условиях колонки используются в периодическом, а не в непрерывном режиме.

Аффинная хроматография (в виде частиц различной формы изображены молекулы с различными химическими структурами, из которых только одна вступает в специфическое взаимодействие с частицами геля. Показано, что в выемки на частицах геля входят лишь молекулы комплементарной формы): а, б - две стадии процесса
Рис. 6.4. Аффинная хроматография (в виде частиц различной формы изображены молекулы с различными химическими структурами, из которых только одна вступает в специфическое взаимодействие с частицами геля. Показано, что в выемки на частицах геля входят лишь молекулы комплементарной формы): а, б - две стадии процесса

После пропускания через колонку порции культуральной жидкости, из которой выделяют продукт, частицы геля подвергают очистке. Методы очистки основаны: а) на использовании гелевых частиц, превышающих по плотности конгломераты веществ, закупоривающих колонку (различие в плотности позволяет очистить гель путем его избирательного осаждения или проточной промывки, уносящей только загрязняющие частицы); б) на придании частицам геля магнитных свойств, что позволяет провести их очистку в градиентном магнитном поле; в) на упаковке частиц геля в виде ленты, покрытой тонкоячеистой оболочкой (лента вращается и проходит попеременно через жидкость с неочищенным продуктом и через буферный раствор, в который переходят загрязняющие примеси).

Масштабирование процесса аффинной хроматографии ограничивается разрушением структуры геля и уносом его частиц током жидкости. Это в частности обусловлено тем, что в широких колонках для крупномасштабной очистки продуктов стенки колонки уже не служат опорой для частиц геля, увлекаемых жидкостью. Увеличение высоты колонки приводит к пропорциональному возрастанию сил, разрушающих нижние слои геля.

Помимо этого, для повышения эффективности и степени разделения близких по свойствам соединений целесообразно применять мелкие частицы геля (менее 1 мкм в поперечнике), но именно такие частицы легче всего увлекаются током жидкости. В последние годы изыскивают средства укрепления гелей для крупномасштабной аффинной хроматографии. Частицы агарозы - наиболее перспективного материала для гелей - предполагают укреплять путем сшивок.

Наряду с аффинной хроматографией, называемой также аффинной адсорбцией в геле, для крупномасштабного отделения и очистки продуктов биотехнологических процессов предполагают применять аффинную преципитацию и аффинное разделение. При аффинной преципитации лиганд прикрепляют к растворимому носителю. При добавлении смеси, содержащей соответствующий белок, образуется его комплекс с лигандом, который выпадает в осадок сразу после его формирования или после дополнения раствора электролитом. Аффинное разделение основано на применении системы, содержащей два водорастворимых полимера. Один из полимеров, например полиэтиленгликоль, несет специфические лиганды.

Другой полимер, например высокомолекулярный декстран, обладает сродством к остальным, примесным компонентам. Так, содержащиеся в разделяемой смеси белки, нуклеиновые кислоты, фрагменты клеточных структур предпочитают более полярный декстран, тогда как целевой продукт, скажем, фермент, накапливается «в сетях» полиэтиленгликоля, несущего молекулы лиганда (субстрата, кофактора, ингибитора). Аффинное разделение - наиболее высокоэффективный из аффинных методов очистки

Н.А. Воинов, Т.Г. Волов
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы