Промышленная микробиология. Производство вторичных метаболитов

25 Декабря в 12:45 6081 0


Вторичные метаболиты (идиолиты) - это низкомолекулярные соединения, не требующиеся на стадии роста чистой культуры, однако они необходимы для функционирования зрелой популяции. Часто они выполняют защитную роль при конкуренции с другими микроорганизмами. К ним относятся антибиотики, алкалоиды, гормоны роста растений, токсины.

Производство антибиотиков

Антибиотиками называют продукты жизнедеятельности организмов, обладающие антибактериальным действием. Большинство известных в настоящее время антибиотиков являются веществами, выделяемыми различного вида микроорганизмами - бактериями, дрожжами, плесенями, актиномицетами. Антибиотики получены также из животных тканей и высших растений (фитонциды).

Идея использования антагонизма между микроорганизмами (так называемого «антибиоза») для подавления болезнетворных микробов принадлежит И. И. Мечникову, положившему в конце прошлого века начало современному учению о лекарственных веществах микробов.

Для того чтобы антибиотическое вещество могло быть применено в медицинской практике, необходима совокупность высокой антибактериальной активности и отсутствия токсического действия по отношению к макроорганизму. Из большого числа выделенных и изученных антибиотиков этому важнейшему требованию удовлетворяют очень немногие соединения.

В химическом отношении антибиотики - вещества очень разнообразные, хотя некоторые из них представляют целые классы с подобной структурой, например: пенициллины, тетрациклины и др. В настоящее время установлено, что вещества, сходные по химической структуре, сходны и по характеру действия. Так, пенициллины действуют на клеточную стенку бактерий и препятствуют ее синтезу. Некоторое время бактерии еще размножаются, но, лишенные клеточной стенки, скоро погибают.

Антибиотик стрептомицин, проникнув в клетку микроба, достигает рибосом (места синтеза белков) и блокирует их деятельность.

Актиномицин действует на молекулу ДНК, в результате становится невозможным синтез информационной РНК, переносящей к рибосомам «приказы» ДНК о синтезе белков. Сходное действие проявляет и рифампицин, хотя и несколько иным способом: он снижает активность РНК-полимеразы и РНК не может образовываться.

На ДНК действуют и молекулы противоопухолевого антибиотика митомицина С: прочно связываясь с ней, он препятствует дальнейшему синтезу ДНК.

При повторных воздействиях молекул антибиотика клетка микроба погибает. Если же антибиотик вводится в недостаточном количестве, то клетки микроба восстанавливаются, и микроб выживает и дает потомство, устойчивое (резистентное) к действию данного антибиотика.

Приведенные примеры действия антибиотиков - это лишь отдельные случаи их разнообразного биохимического воздействия на микроорганизмы.

Классификация антибиотиков

Среди основных принципов классификации антибиотиков рассмотрим следующие:
1. Классификация антибиотиков по биологическому происхождению:
а) антибиотики, вырабатываемые микроорганизмами, относящимися к эубактериям;
б) антибиотики, образуемые микроорганизмами, принадлежащими к порядку Actinomycetales;
в) антибиотики, образуемые цианобактериями;
г) антибиотики, образуемые несовершенными грибами;
д) антибиотики, образуемые грибами, относящимися к классам базиди-мицетов и аскомицетов;
е) антибиотики, образуемые лишайниками, водорослями и низшими растениями;
ж) антибиотики, образуемые высшими растениями;
з) антибиотики животного происхождения.

2. Классификация по спектру биологического действия:
а) противобактериальные антибиотики узкого спектра действия, активные преимущественно в отношении грамположительных организмов;
б) противобактериальные антибиотики широкого спектра действия;
в) противотуберкулезные антибиотики;
г) противогрибные антибиотики;
д) противоопухолевые антибиотики.

3. Классификация антибиотиков по химическому строению:
а) антибиотики ациклического строения;
б) антибиотики алициклического строения;
в) тетрациклины;
г) ароматические антибиотики;
д) антибиотики-хиноны;
е) антибиотики-кислородсодержащие гетероциклические соединения;
ж) антибиотики-азотсодержащие гетероциклические соединения;
з) антибиотики-аминогликозиды;
и) металлсодержащие антибиотики.

Основные этапы промышленного получения антибиотиков

После установления высоких лечебных свойств первого антибиотика - пенициллина сразу же возникли задачи организации его производства в больших количествах. На первом этапе промышленное получение этого препарата носило примитивный, экономически нерентабельный характер. Выращивание продуцента антибиотика осуществлялось на средах, находящихся в небольших сосудах, при поверхностном культивировании гриба.



Процесс развития гриба продолжался 8-10 суток. Такой способ культивирования гриба при большой затрате труда давал весьма низкий выход антибиотика, и себестоимость препарата была соответственно очень высокой. В результате поисков путей наиболее рационального способа производства антибиотика был предложен метод глубинного выращивания гриба в специальных емкостях-ферментаторах при продувании воздуха и перемешивании культуральной жидкости.

Современное промышленное получение антибиотиков - это сложная многоступенчатая биотехнологическая схема, состоящая из ряда последовательных стадий:

1. Стадии биосинтеза (образования) антибиотика. Это основная биологическая стадия сложного процесса получения антибиотического вещества. Главная задача на этой стадии - создание оптимальных условий для развития продуцента и максимально возможного биосинтеза антибиотика.

Высокая результативность стадии зависит от уровня биосинтетической активности продуцента антибиотика, времени его максимального накопления, стоимости сред для культивирования организма, в том числе стоимости применяемых предшественников, а также общих энергетических затрат на процессы, связанные с развитием продуцента антибиотического вещества.

2. Стадии предварительной обработки культуральной жидкости, клеток (мицелия) микроорганизма и фильтрации (отделение культуральной жидкости от биомассы продуцента). Эффективность стадии во многом определяется составом среды для выращивания продуцента антибиотика, характером его роста, местом основного накопления биологически активного вещества (в культуральной жидкости или внутриклеточно).

3. Стадия выделения и очистки антибиотика. На этой стадии, в зависимости от свойств антибиотика, его химического строения и основного места накопления антибиотического вещества, применяют различные методы выделения и очистки. В качестве основных методов используются экстрация, осаждение, сорбция на ионообменных материалах, упаривание, сушка. Особенность этой технологической стадии определяется тем, что на первой стадии работы имеют дело с небольшой концентрацией (~1 %) антибиотика в обрабатываемом растворе, тогда как на последующих этапах его концентрация увеличивается до 20-30 %. Все это требует применения различных емкостей и объемов используемых реагентов.

4. Стадии получения готовой продукции, изготовления лекарственных форм, расфасовки. Особенность стадии определяется очень высоким требованиям к качеству конечного продукта. В случае выпуска антибиотиков, предназначенных для инъекций, препараты должны быть стерильными; получение таких антибиотических препаратов, приготовление различных лекарственных форм, дозировка (расфасовка) и упаковка должны осуществляться в асептических условиях.

Для максимального выхода антибиотика при культивировании продуцента используют комплекс мер, включающих подбор наиболее благоприятных для этих целей питательных сред и режимов культивирования организма. Весь этот комплекс мер включается в понятие «управляемый биосинтез».

В промышленных условиях управляемый биосинтез требует строгого соблюдения технологического процесса как на стадии подготовки инокулята, так и на стадии биосинтеза. На стадии подготовки инокулята особое внимание обращают на состав среды, на которой выращивается организм, на возраст клеток или мицелия. На стадии биосинтеза, кроме состава среды, большую роль играют скорость потребления тех или иных компонентов, предшественники, регуляция процесса аэрации культуры, поддержание соответствующих температуры и рН среды и других показателей режима культивирования.

В современных условиях производства принимают меры к максимальному снижению себестоимости препаратов путем интенсификации всех стадий технологического процесса и, прежде всего, повышением эффективности первой стадии - биосинтеза антибиотического вещества.

Для этого необходимо:
а) внедрение в производство наиболее высокопродуктивных штаммов микроорганизмов - продуцентов антибиотиков;
б) создание и обеспечение самых благоприятных условий развития продуцента антибиотика на относительно дешевых средах;

в) широкое использование математических методов планирования процесса развития организма и электронно-вычислительной техники с целью оптимизации и моделирования условий его культивирования, обеспечивающих максимальный выход антибиотика;

г) применение современного оборудования на всех стадиях технологического процесса с автоматизированными контролирующими устройствами основных параметров развития организма и стадий биосинтеза антибиотика.

Л.В. Тимощенко, М.В. Чубик
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы