Физиология микроорганизмов: условия культивирования бактерий, дыхание бактерий

24 Декабря в 20:03 7260 0


Условия культивирования бактерий

Для роста бактерий, кроме состава питательной среды, имеют значение кислотность среды, аэрация, температура, свет и влажность. Большинство бактерий растет при рН 6,8-8,0, т. е. в нейтральной среде. Поддержание нейтрального значения рН, особенно важно для кислотопродуцирующих бактерий. В процессе промышленного культивирования бактерий в больших объемах рН среды регулируется автоматически добавлением растворов бикарбоната натрия или щелочей.

Газовый состав среды также важен для бактерий. Значительная часть из них нуждается в постоянном притоке молекулярного кислорода. Такие микроорганизмы объединены в группу облигатных аэробов. Меньшая часть бактерий - облигатные анаэробы - способны развиваться только в отсутствии кислорода. Однако большинство бактерий - факультативные анаэробы, они растут как в присутствии кислорода, так и без него.

Для бактерий, культивируемых на плотных питательных средах или в небольших объемах жидких сред, достаточно кислорода, присутствующего в атмосфере. Для культивирования бактерий-аэробов в промышленных масштабах требуется принудительная аэрация путем продувания кислорода в реактор или ферментатор с культурой, а для культивирования анаэробов - создание бескислородных условий.

Большинство известных микроорганизмов относится к мезофилам, температурный оптимум для которых лежит в интервале 25-37оС. Термофилы способны расти при 45-90оС, а психрофилы остаются жизнеспособными при 5-10оС.

Отклонение температурного режима от оптимального неблагоприятно сказывается на жизнедеятельности бактерий. Поэтому культивирование их осуществляют в специальных шкафах-термостатах или термостатированных комнатах, где поддерживается оптимальная заданная температура.

При культивировании бактерий в лабораторных и производственных условиях, для получения больших количеств биотехнологического продукта - вакцин, диагностикумов, биологически активных веществ, используют две различные технологические системы: постоянное (или периодическое) и непрерывное (или проточное) культивирование.

В первом случае размножение бактерий происходит в закрытом сосуде до тех пор, пока плотность клеточной популяции не достигнет критической концентрации и не будут исчерпаны запасы питательной среды, а продукты метаболизма не начнут проявлять токсические свойства. В такой культуре размножение бактерий ограничено определенным числом популяций. В промышленных условиях часто используют второй вариант - проточное (или непрерывное) культивирование.

При этом в реактор или ферментатор непрерывно, при перемешивании, поступает свежая питательная среда, а продукты метаболизма и накопившаяся бактериальная масса автоматически удаляются. Такое культивирование можно осуществлять в специальных аппаратах: хемостате и турбидостате, где необходимый объем питательной среды поступает автоматически, в зависимости от концентрации бактериальных клеток.

Изотоничность питательной среды зависит от содержания неорганических солей. Для большинства бактерий изотоничной считается среда, концентрация натрия хлорида в которой составляет 0,5-0,6 %.

Время выращивания (культивирования) бактерий зависит от времени очередного деления клеток данной популяции.

Дыхание бактерий

Для осуществления биологических синтезов, помимо питательных веществ, бактерии нуждаются в определенном количестве энергии.

Универсальным аккумулятором химической энергии в клетке является аденозинтрифосфорная кислота (АТФ), которая образуется в результате дыхания, биологического окисления, основанного на окислительно-восстановительных реакциях или брожении. Молекулы АТФ синтезируются в результате переноса электрона от первичного донора к конечному акцептору. Конечным акцептором электронов чаще всего выступает молекулярный кислород О2, и тогда осуществляется аэробное дыхание. Если в качестве акцептора электронов выступают неорганические соединения (NO2, SO4, SO3), возникает анаэробное дыхание.

В том случае, когда продукты органического субстрата служат одновременно и донорами и акцепторами водорода, метаболический процесс называется брожением (ферментацией).

По потребности в кислороде бактерии можно разделить на 5 групп:
1. Строгие (облигатные) аэробы, рост этих микроорганизмов прекращается в отсутствии О2.

2. Строгие (облигатные) анаэробы не переносят доступа воздуха, так как образующиеся токсические производные кислорода (перекись водорода, супероксидный и гидроксильный радикалы, синглетный кислород) губительны для самих же бактерий из-за отсутствия у них ферментов (каталазы, пероксидазы, супероксиддисмутазы), разрушающих эти токсические продукты.



3. Факультативные анаэробы - наиболее обширная группа патогенных микроорганизмов, которые способны использовать в качестве акцепторов электронов как молекулярный кислород, так и органические соединения, а так же переключатся на процесс брожения в отсутствии молекулярного кислорода.

4. Микроаэрофильные бактерии хорошо растут при сниженном парциальном давлении кислорода, но при повышенном содержании СО2.

5. Аэрофилы нуждаются в повышенном содержании кислорода.

Ферменты бактерий

Питание микроорганизмов осуществляется благодаря наличию в клетке различных ферментов, катализирующих все жизненно необходимые реакции. Ферменты - это биологические катализаторы белковой природы. Микробная клетка, подобно клеткам высших организмов, оснащена достаточно активным ферментативным аппаратом. Ферменты микроорганизмов обладают теми же свойствами и функциями, что и ферменты высших организмов.

В соответствии с катализирующими реакциями все ферменты разделяют на шесть классов:
1. Оксидоредуктазы - катализируют реакции окисления-восстановления.
2. Трансферазы - катализируют реакции переноса различных групп от донора к акцептору.
3. Гидролазы - катализируют разрыв связей в субстратах с присоединением воды.
4. Лиазы - катализируют реакции разрыва связей в субстрате без присоединения воды или окисления.
5. Изомеразы - катализируют превращения в пределах одной молекулы (внутримолекулярные перестройки).
6. Лигазы (синтетазы) - катализируют присоединение двух молекул с использованием энергии фосфатных связей.

Несмотря на малые размеры микробной клетки, распределение в ней ферментов строго упорядочено. Ферменты энергетического обмена и транспорта питательных веществ локализованы в цитоплазматической мембране и ее производных. Ферменты белкового синтеза связаны с рибосомами. Многие ферменты не связаны с определенными структурами клетки, а находятся в цитоплазме в растворенном виде.

Ферменты бактерий подразделяются на экзо- и эндоферменты. Эндоферменты функционируют только внутри клетки.

Они катализируют реакции биосинтеза и энергетического обмена. Экзоферменты выделяются клеткой в среду и катализируют реакции гидролиза сложных органических соединений на более простые, доступные для ассимиляции микробной клеткой. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Известны ферменты, которые получили название аллостерических. Кроме активного центра, у них имеется регуляторный, или аллостерический центр, который в молекуле фермента пространственно разделен с активным центром. Аллостерическим (от греч. alios - иной, чужой) он называется потому, что молекулы, связывающиеся с этим центром, по строению (стерически) не похожи на субстрат, но оказывают влияние на связывание и превращение субстрата в активном центре, изменяя его конфигурацию. Молекула фермента может иметь несколько аллостерических центров. Вещества, связывающиеся с аллостерическим центром, называют аллостерическими эффекторами.

Они влияют через аллостерический центр на функцию активного центра: или облегчают ее, или затрудняют.

Соответственно аллостерические эффекторы называются положительными (активаторы) или отрицательными (ингибиторы). Аллостерические ферменты играют важную роль в тонкой регуляции метаболизма бактерий. Поскольку практически все реакции в клетке катализируются ферментами, регуляция метаболизма сводится к регуляции интенсивности ферментативных реакций.

Ферменты микроорганизмов, такие, как лигазы и рестриктазы, нашли широкое применение в биотехнологии, в том числе в генетической инженерии, для получения различных биологически активных веществ, гибридом, продуцирующих моноклональные антитела, а также ряда продуктов в легкой и пищевой промышленности.

Ферменты микроорганизмов характеризуют их биологические свойства и поэтому их исследуют с целью идентификации бактерий. В зависимости от субстрата гидролитические ферменты принято делить на две большие группы:
1 - гидролитические (или сахаролитические) ферменты, субстратом для которых являются различные сахара, а продуктами их расщепления - кислоты, спирты, альдегиды, Н2О и СО2;
2 - протеолитические ферменты, расщепляющие белки с образованием полипептидов, аминокислот, аммиака, индола, сероводорода.

Для изучения активности ферментов при идентификации микроорганизмов широко используют дифференциально-диагностические среды, в состав которых входят определенные субстраты - сахара или белки.

Л.В. Тимощенко, М.В. Чубик
Похожие статьи
показать еще
 
Биотехнологии и биоматериалы