Электростимуляция. Основные законы раздражения

20 Марта в 15:50 1094 0


Еще в прошлом столетии было установлено, что малые по силе раздражения не вызывают сокращения мышц и называются подпороговыми.

Для вызова полноценного возбуждения (сокращения мышц) раздражитель должен быть определенной силы - равный или превышающий известную критическую величину.

Раздражение, вызывающее минимальное по силе сокращение, называется порогом возбуждения.

Так как в качестве раздражителя применяется электрический ток, то порог возбуждения обозначается либо в размерностях тока, либо напряжения.

Реобаза

Порог возбуждения обозначают термином реобаза. По реобазе обычно судят о возбудимости мышечной ткани - чем ниже порог, тем выше возбудимость. В относительно небольших пределах сила сокращения возрастает с увеличением силы раздражения. При чрезмерной силе раздражения мышца расслабляется и ее сократительная способность может вообще нарушаться.

Минимальная по величине сила раздражения, вызывающая наибольшую реакцию ткани, называется максимальной силой раздражения. Сила раздражения меньше максимальной, но больше пороговой, называется субмаксимальной силой раздражения. Супермаксимальными раздражениями называются такие раздражения, сила которых превосходит максимальную. Кроме порога возбуждения для возникновения возбуждения большое значение имеет еще и длительность раздражения. Минимальное время, в течение которого электрический ток должен действовать на ткань, чтобы вызвать возбуждение, находится в обратной зависимости от напряжения и силы тока. Эта зависимость выражается кривой силы-длительности раздражения Горвега-Вейса-Лапика.

Кроме того, при медленном нарастании силы раздражения специфическая ответная реакция не возникает. Для вызова оптимальной реакции при ритмическом раздражении, частота раздражения должна соответствовать лабильности, а длительность импульса должна быть не меньше полезного времени. С увеличением частоты следования импульсов эффект сокращения увеличивается до определенной величины (оптимума). При повышении частоты раздражения выше оптимума эффект сокращения не увеличивается в той же степени, а становится пропорциональным корню квадратному из частоты, а в дальнейшем раздражающее действие и вовсе прекращается (10-50 КГц).

В силу того, что параметры сигналов, измеряемые вне ткани и получаемые в самих тканях различны, на возникновение возбуждения оказывает влияние площадь электродов в каждом отдельном случае, т.к. от нее зависит плотность тока. Сила сокращения будет зависеть от того, через какую площадь электродов мы подводим одну и туже силу тока. Чем больше плотность тока, т.е. чем меньше поверхность электрода, тем сильнее сокращение. При этой же силе тока плотность обратно пропорциональна площади электродов. Поэтому, при сравнении физиологического действия, необходимо всегда сравнивать не силу тока, а плотность.

Кривая Горвега - Вейса - Лапика
Кривая Горвега - Вейса - Лапика

При подведении электрического тока через электроды к телу он проходит от электрода к электроду не по прямой линии, а по очень сложному пути. Наибольшая плотность тока под электродами зависит от проводимости (сопротивления) ткани и расстояния между электродами. Кратчайший путь имеет наименьшее сопротивление и плотность тока наибольшая. Глубина проникновения различных токов в тканях организма изучена недостаточно. В силу сложившихся традиций в электротерапии и электрофизиологии при поиске оптимальных параметров раздражения основное внимание уделялось амплитудным значениям, длительности, частоте импульсов и плотности тока.

Форма импульса

К началу 1960-х годов было окончательно признано, что биологический импульс, несущий рабочую команду мышцам, имеет форму не однополярного треугольного, а форму асимметричного биполярного сигнала.

Современные представления о нервно-мышечной стимуляции предполагает стимуляцию мышц при минимальных болевых ощущениях. Зависимость болевых ощущений от длительности стимулирующих импульсов и скважности показана на рисунке.



Э.К. Казимиров, изучая нелинейные свойства нервной и мышечной тканей, в то время один из первых доказал, что биполярный импульс, как сигнал электростимуляции имеет важное значение. В разработанной им электронной модели нейрона он показал, что выдержав равенство вольт-секундных площадей разнополярных частей стимулирующих импульсов, можно получить нолевую постоянную составляющую и тем самым практически исключить влияние постоянной поляризации тканей и явления электролиза на процессы возбуждения. Биполярному импульсу можно придать различную конфигурацию - симметричную и асимметричную с различными соотношениями параметров обоих частей.

Асимметричные формы импульсов позволяют по-новому подойти к возбуждению живых структур с неодинаковыми (асимметричными) электрическими характеристиками для токов разной полярности. Важность электростимуляционного воздействия сигналами асимметричной формы на возбудимые структуры с существенно нелинейными характеристиками мембран не была осознана разработчиками ЭСУ как необходимость биполярно-инверсной структуры сигнала со сменой знака асимметрии. Это произошло потому, что большинство разработчиков ЭСУ были заняты переводом электросхем на транзисторную, а в последующем - на аналого-цифровую элементную базу.

По инерции и в последнее время еще держатся за концепцию формального моделирования в электростимуляторах треугольного импульса 40-х годов. Так, например, заявители из Израиля, а также представители НИЦ «Миоритм», применяя в своих электростимуляторах индукционную катушку, на выходе оставляют только размыкательный компонент, близкий по форме к треугольному сигналу.

Зависимость болезненных ощущений от длительности стимулирующих импульсов и межимпульсного интервала (частоты.)
Зависимость болезненных ощущений от длительности стимулирующих импульсов и межимпульсного интервала (частоты.)

Французская фирма ЕТМ, специализирующаяся в изготовлении электромедицинского оборудования, считает, что биполярные асимметричные токи прямоугольной формы при воздействии на живые образования не вызывают в тканях электролиза исключают возможность химического ожога и запатентовала эту форму импульсов («ВЮРР»).

В выпускаемой фирмой аппаратуре доминирующая полярность импульсов может реверсироваться автоматически, что предотвращает привыкание организма к длительным процедурами электростимуляции, а ручная регулировка частоты генерации импульсов от 4 до 100 Гц позволяет успешно применять эти токи при дифференцированной электростимуляции мышц с различной степенью их атрофии.

Достижения науки и технологии последних лет значительно расширили сферы и применения электростимуляции. Сегодня на рынке бывшего СССР имеется свыше 40 видов электростимуляторов, различающихся названиями, наборами аксессуаров, числом каналов, но с одинаково высокой ценой. Основное из назначений: коррекция фигуры, омоложение, увеличение груди, уменьшение талии, сжигание жира, лимфодренаж, борьба с целюлитом. При этом вполне серьезно утверждается, что уровень исполнения устройства и его качество определяется числом ручек, кнопок, индикаторов, таймеров, дисплеев, фиксированных программ и др.

Для правильной ориентации в спектре выпускаемых электростимуляторов, в частности, для определения совокупности требуемых характеристик и параметров с целью получения ожидаемого эффекта, целесообразно их классифицировать, учитывая тот факт, что устройства, близкие по назначению, как правило, имеют существенные отличия в параметрах.

По нашему мнению эту работу мог выполнить только опытный специалист в области электростимуляторной техники.

В. Ю. Давиденко
Похожие статьи
показать еще
 
Реабилитация и адаптация